Monday, May 24, 2010

(b-a)(c-a)(c-b)=what matrix?

(b-a)(c-a)(c-b)=1 1 1


a b c


a^2 b^2 c^2


prove this matrix

(b-a)(c-a)(c-b)=what matrix?
Ideas: Subtract the values of the first column from the second column and the third column, respectively.


So, the determinant


= (b-a)(c^2 - a^2) - (c-a)(b^2 - a^2)


= (b-a)(c-a)(c+a - b-a)


= (b-a)(c-a)(c-b)
Reply:I do not understand the question.


b-a=1


b=a


c-a=1


c=a


c-b=1


c=b


a=b=c=1


a b c = 1 1 1


a^2 b^2 c^2 = 1 1 1


So the Matrix is


1 1 1


1 1 1


1 1 1


Is this what you wanted to prove? The matrix should have 3 rows and 3 columns.


No comments:

Post a Comment